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Abstract

A complete theory of void swelling in irradiated metals requires the treatment of defect cluster nucleation events, as

well as subsequent growth of stable clusters. One difficulty is that small-voids evolve rapidly and reversibly, whereas the

secular evolution of the overall system is extremely slow. Thus, rate theory models for the void size distribution entail a

set of stiff, coupled equations. A combined Master equation and Fokker–Planck numerical approach is introduced to

address this problem and permit large time-steps at late times. Calculations are stable in practice, easily converged, and

computationally efficient to large doses over a wide range in temperatures. The results are encouraging compared to

experiment and earlier, related calculations.

� 2003 Elsevier B.V. All rights reserved.
1. Introduction

Void swelling is an important consideration for long-

term materials reliability in a radiation environment.

Careful studies of a temperature- and flux-dependent

transient delay to swelling suggest that the initial

microstructural evolution may determine the ultimate

material longevity. This �incubation’ stage often persists

for tens of displacements per atom (dpa) of irradiation,

during which little swelling occurs. Once stable voids

finally accumulate, they can rapidly grow larger under

irradiation. This causes secular changes detrimental to

material properties, e.g., volume increases of 1% per dpa

in austenitic stainless steel [1–5]. Such rapid swelling can

quickly render a material unusable for engineering

applications.

Irradiation damage alters microstructure in several

ways. It directly creates residual atomic defects and

small defect clusters, it slowly modifies the pre-existing

dislocation network and impurity distribution, and it

gradually introduces new impurities by nuclear trans-
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mutation and decay. Small defect clusters are often

impermanent, annihilating, dissociating, being absorbed

at dislocations or grain boundaries, or being engulfed by

later damage cascades. Thus, the population of small

defect clusters quickly reaches a quasi-stationary distri-

bution [6]. In the absence of permanent vacancy clusters,

interstitial- and vacancy-type defects are absorbed at

dislocations in equal amounts, and there is no further

volume change on average. Rarely, a stable void nucle-

ates and grows larger under the radiation-induced va-

cancy supersaturation. When such cavities exist in

significant numbers, swelling becomes a segregation

process, with interstitials preferentially absorbing at

dislocations and vacancies at voids [7].

It is evident from transmission electron microscopy

that stable void nucleation occurs transiently. The total

measured density of large voids is essentially constant

during the late-stage, steady swelling, so no new voids

are being created at these times [8]. This is as expected,

since the theoretical rate of void nucleation is expo-

nentially sensitive to the vacancy supersaturation [9,10].

Stable voids act as vacancy sinks, depleting the radia-

tion-driven supersaturation and preventing the nucle-

ation of additional voids. This sensitivity also implies

that the total void nucleation time will depend on
ed.
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temperature and irradiation dose rate. Together, these

characteristics suggest that void nucleation is a neces-

sary pre-cursor to steady swelling and may be the

proximate cause of the temperature- and dose-rate-

dependent incubation delay.

We have developed a computational approach for

treating void nucleation and growth in detail that eval-

uates the density of vacancy clusters of all sizes from

monomers to arbitrary sizes. In this approach, the time-

dependent state of a high-purity metal under irradiation

is described by the thermodynamic parameters of tem-

perature and pressure, the non-equilibrium, mobile

point defect concentrations (irradiation cascade-induced

monomer vacancies, Cv, and interstitials, Ci) and the

densities of extended defects. (The defect distribution

function, q, is currently limited to voids and network

dislocations, q ¼ qvoid þ qdisl:) The irradiation damage is

introduced as isolated monomers rather than as a sta-

tistical distribution of ready-made defect clusters [11–

16]. Spatial relations between cluster defects are

neglected, in effect assuming that the void density is low,

pre-existing material inhomogeneity is insignificant, and

spatial pattern formation does not occur in the defect

densities. Thus, the present approach does not account

for grain boundaries or dislocation cell walls. There is

similarly no coalescence or impingement of voids on

each other or on dislocations.

Once created, mobile point defects diffuse under the

influence of stress-mediated interactions and annihilate

or are absorbed at defect sinks. These sinks include va-

cancy clusters and dislocations. The radiation damage

thereby feeds simultaneously the climb of dislocations

and growth of voids. We treat this reaction-diffusion

problem by mean field approximation [17,18]. The

(sessile) voids evolve by a series of coupled reactions

with monomer defects, e.g., vacancy monomer plus

n-vacancy cluster in a reversible reaction, vþ vn ()
vnþ1, etc., or irreversible interstitial reactions, iþ vn !
vn�1. In turn, the instantaneous monomer densities are

coupled to the population of larger defects (monomer

sinks/sources). This self-consistent feedback causes the

rates of void growth and size-fluctuation to be time-

dependent functionals of the entire void distribution and

dislocation density, as well as the temperature and

irradiation rate. For example, the calculation automat-

ically suppresses void nucleation as the vacancy super-

saturation evolves in time or as the competition for

vacancy capture at the various sinks changes.

We decouple this system of non-linear reaction

equations to evaluate the evolution [10]. First, the time-

dependent monomer concentrations are obtained ana-

lytically from coupled, quadratic rate equations. Their

solution assumes a quasi-stationary monomer concen-

tration appropriate to the instantaneous density of

monomer sinks/sources (i.e. voids and dislocations),

essentially as in Ref. [10]. The population of clusters of
all kinds, s, is held constant at instantaneous values,

qðs; tÞ, when solving these equations. Subsequently, the

void distribution function, qvoid, is incrementally evolved

in time while holding the monomer concentrations fixed,

effectively linearizing the binary monomer-void reaction

rate equations over short-time intervals. It is useful to

enforce mass balance between these two steps to ensure

the accuracy of the final swelling results. That is, for

every vacancy created there is a compensating interstitial

so the number of atoms remains always conserved. As a

result, the vacancy rate equation is more elaborate here

than in earlier implementations [10,19].

The coupled monomer rate equations are:

0 ffi dCv

dt
¼ Pv � jDvCvðtÞDiCiðtÞ � DvCvðtÞZvS

þ DiCiðtÞqðv2; tÞZiðv2ÞAðv2Þ þ DvC
evap
v ZvS; ð1Þ
0 ffi dCi

dt
¼ Pi � jDvCvðtÞDiCiðtÞ � DiCiðtÞZ iS

þ DiCiðtÞqðv2; tÞZiðv2ÞAðv2Þ; ð2Þ

in the quasi-stationary limit, where C are the instanta-

neous monomer concentrations to be solved, D are their

diffusivities, and P are the radiation-induced monomer

production rates per unit volume, v denotes the vacancy
monomer, vn denotes the n-vacancy cluster, and i de-

notes the interstitial monomer. Vacancy and interstitial

production rates are taken to be equal, Pi ¼ Pv. The

second term in both equations, jDvCvDiCi, describes the

rate of direct vacancy-interstitial annihilation. Monomer

absorption at all other defects, s, is included by the third

term with aggregate parameters:

S ¼
X
s

qðs; tÞAðsÞ; ð3Þ
Z iS ¼
X
s

qðs; tÞZiðsÞAðsÞ þ qðv2; tÞZiðv2ÞAðv2Þ; ð4Þ
ZvS ¼
X
s

qðs; tÞZvðsÞAðsÞ þ 2qðv; tÞZiðvÞAðvÞ; ð5Þ

where qðs; tÞ is the concentration of sinks of type s; A are

cross-sections for monomer impingement; and bias fac-

tors, Z, for interstitials or vacancies quantify the effects

of long-range interactions between sinks and monomers

[17,18] on impingement rates. The cross-section and bias

factors simply parametrize the mean-field solution for

the flux of mobile monomers to the sinks. (Here, s de-

notes all of the composite defects, i.e., dislocations and

voids, including vacancy dimers and larger clusters. The

monomer rate equation depends explicitly (i.e. the
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solution to the next time-step depends on quantities

from the previous one) on these aggregate parameters,

so that, e.g., dCv

dt jtþs at time t þ s depends on the cluster

parameters at time t. This explicit coupling demands an

appropriately short time-step, t, which is established in

practice by seeking stable, well-converged results.)

The rate of vacancy–vacancy aggregation, vþ v !
v2, is given by the second term in the expression for Zv, in

terms of the vacancy–vacancy cross-sections, Av, and

bias factors, ZvðvÞ. The factor of 2 in this term indicates

that the process removes two vacancies from the popu-

lation. (The relative mobility of the pair is given by 2Dv,

but the reaction rate coefficient must be corrected by

1/2 to avoid double-counting pairs of monomers.) All

composite defects (vacancy clusters and dislocations)

are also assumed to have negligible diffusivity compared

to the monomers. The last term in the vacancy rate

equation describes the thermal emission of vacancies by

dislocations and voids.

Cevap
v ZvS ¼

X
s

qðs; tÞZvðs� vÞAðs� vÞCeq
v ðs; tÞ

þ qðv2; tÞZvðvÞAðvÞCeq
v ðv2; tÞ; ð6Þ

given in terms of the equilibrium vacancy concentration

for each particular defect cluster. The cross-sections and

bias factors that are employed here are appropriate to

the defect minus one vacancy, as required by detailed

balance. The summation is augmented by an extra

contribution from v2 ! vþ v, thereby counting the

dimer dissociation process twice, in accordance with its

production of two vacancies. Finally, the fourth term in

the vacancy rate equation describes the annihilation of

an interstitial at a vacancy dimer, iþ v2 ! v, which

yields one vacancy. The interstitial equation has been

written to include the same term, by defining Z i appro-

priately. The actual aggregate interstitial sink strength is

given by:

eZZiS ¼ Z iS � qðv2; tÞZiðv2ÞAðv2Þ: ð7Þ

The analytic solution to these coupled quadratic equa-

tions is:

DiCi ¼
1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þM

p
� L

�
; ð8Þ
L ¼ ðPv � PiÞ
SZ i

þ Zv

Z i

DvC
evap
v þ ZvS

eZZi

Z i

� 1

j
; ð9Þ
M ¼ 4Pi
Zv

Z i

� 1

j
; ð10Þ
DvCv ¼
Z i

Zv

DiCi �
ðPi � PvÞ

SZv

þ DvC
evap
v : ð11Þ
In practical implementations, Cvðt þ sÞ is obtained from

these equations in terms of qðtÞ from the previous iter-

ation. The vacancy concentration appears in two places,

as the unknown Cv and as a portion of the sink terms, as

qðv; tÞ. These quantities should be equal. Accordingly,

we solve the equations iteratively in order to obtain

qðv; t þ sÞ. All other cluster densities continue to be

specified at time t. Self-consistency seems to improve the

mass-conservation, besides eliminating a minor incon-

sistency, and the added computational effort is small.

The second step in the numerical time evolution up-

dates the void size distribution function under the flux of

mobile vacancies and interstitials. (The dislocation sub-

system is described by a single, time-independent density

parameter, qdisl, in the present approach.) The distribu-

tion function, qðvn; tÞ ¼ qvoidðn; tÞ, expresses the time-

dependent density of voids of a given size, n, spanning
the range from vacancy monomers to voids of arbitrary

size. All voids are approximated as spherical in shape.

The governing Master equation is specified by the rates

at which voids add a vacancy, lose a vacancy to thermal

emission, or lose a vacancy by absorbing an interstitial

atom (at rates b, h, a respectively [10]). These are iden-

tical to the sink terms in the monomer rate equations,

i.e., for a cluster of n-vacancies:

aðvn; tÞ ¼ DiCiðtÞAðvnÞZvðvnÞ; ð12Þ
bðvn; tÞ ¼ DvCvðtÞAðvnÞZvðvnÞ; ð13Þ
hðvnÞ ¼ DvCeq
v ðvnÞAðvn�1ÞZvðvn�1Þ; ð14Þ

where the concentrations Cv and Ci are held fixed at the

values given by the monomer rate equation at time t.
The resulting equations are tridagonal in matrix

form, and linear, d~qq
dt ¼ M~qq:

qðvÞ ¼ CvðtÞ; ð15Þ
dqðv2Þ
dt

¼ ½bðvÞ�qðvÞ � ½aðv2Þ þ bðv2Þ þ hðv2Þ�qðv2Þ

þ ½aðv3Þ þ hðv3Þ�qðv3Þ; ð16Þ
dqðv3Þ
dt

¼ ½bðv2Þ�qðv2Þ � ½aðv3Þ þ bðv3Þ þ hðv3Þ�qðv3Þ

þ ½aðv4Þ þ hðv4Þ�qðv4Þ; ð17Þ

..

.

dqðvnÞ
dt

¼ ½bðvn�1Þ�qðvn�1Þ � ½aðvnÞ þ bðvnÞ þ hðvnÞ�qðvnÞ

þ ½aðvnþ1Þ þ hðvnþ1Þ�qðvnþ1Þ; ð18Þ

where the vacancy monomer density is already obtained

from the solution to the monomer rate equation, (i.e. the

boundary condition at n ¼ 1 is specified by equating the

monomer concentration to the solution of the monomer
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rate equation, qðv; tÞ � CvðtÞ). The distribution is also

zero as n ! 1.

After updating the cluster distribution function, it is

necessary to re-compute the monomer sink strengths

and vacancy emission rates for the entire distribution of

voids. This gives the sink/source terms for the next

solution to the monomer equations. The procedure is

iterated over successive intervals s.
In practice, the net time-integrated flux of vacancies

(minus interstitials) to the voids equates to the accu-

mulated volume of those voids only when incremental

changes, qðt þ sÞ � qðtÞ, are linear in dq
dt s. (Equality be-

tween these two measures of swelling must be preserved

in order to maintain mass-conservation.) The forwards

Euler method of solution is linear, and gives a term-by-

term cancellation between the quasi-stationary absorp-

tion/emission rates in the monomer equations and the

net evolution of the clusters. Such an explicit solution is

easily obtained. However, this conditionally convergent

approach is unsatisfactory because it is restricted to

small time-steps. Backwards Euler method would be

stable, but it is a non-linear method. It includes higher-

order terms in dq
dt s that are not present in the monomer

rate equations, so the overall system evolution does not

strictly conserve mass.

Regardless of the method of solution, the Master

equation approach becomes inefficient as the simulation

progresses. The grid of integer void sizes, n, reaches

from monomers to the largest cluster in the system, and

the matrix problem grows to impractical size. At the

same time, cluster densities between the large and small

limits decrease to negligible levels, so that most of the

size domain could be ignored. Euler methods also re-

quire that relative changes in the distribution be kept

small over successive iterations [20]. As the stable clus-

ters grow to larger size, the distribution is rapidly

changing at the leading and trailing edges (Fig. 2). The

rapid evolution at these transient edges confines the

backwards Euler method to small values of s [20].

We address these various difficulties by making a

continuum approximation for the cluster sizes. The

discrete Master equation is transformed to a Fokker–

Planck equation for continuous size coordinate n:

oqFPðn; tÞ
ot

¼ � o

on
KdriftðnÞqFPðnÞ þ 1

2

o2

on2
QdiffðnÞqFPðnÞ:

ð19Þ

The Fokker–Planck equation approximates the discrete

evolution for size-dependent drift and diffusion coeffi-

cients:

KdriftðnÞ ¼ ½bðnÞ � aðnÞ � hðnÞ�; ð20Þ
QdiffðnÞ ¼
1

2
½aðnÞ þ bðnÞ þ hðnÞ�: ð21Þ
A path integral formalism has been applied to this

equation before [10], where the short-time propagator is:

Gðn; n0; sÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2pQs

p e�ðn�n0�KsÞ2=ð2QsÞ: ð22Þ

This method is non-linear in s, unconditionally stable,

and conserves mass. A straightforward computational

implementation still includes all sizes from smallest to

largest, although it allows coarse-graining of the

numerical grid.

Ultimately, however, it is preferable to solve the void

evolution independent of any grid over size. Such a

method would efficiently extend to multiple dimensions,

where grid methods become computationally prohibi-

tive. (Such extension permits the inclusion of helium and

hydrogen content in addition to cavity size for future

simulations of irradiation-induced void/bubble growth.)

Accordingly, we employ a continuum, Langevin Monte

Carlo scheme to model the size distribution function.

When the number of Langevin particles, N , is large,

their distribution approximates a continuous qðn; tÞ. A
biased random-walk approximates the Fokker–Planck

evolution. In our case, a �particle’ represents an ensem-

ble (with a given density) of identical clusters (all of size

n) rather than an individual void. That is, each discrete

element possesses coordinate, n, and weight, q. The

clusters in a given ensemble are constrained to stay

together in size as they evolve, so the particle remains a

d-function in size space, and the particle weight remains

constant over time. A particle evolves from size n0 to n
during a short-time interval, s, according to the appro-

priate continuous random walk:

n ¼ n0 þ Kðn0Þsþ nðQðn0Þ; sÞ; ð23Þ

using the same drift and diffusion parameters as in the

Fokker–Planck short-time propagator approach. This

continuous random walk employs a normal deviate, n,

sampled from the Gaussian distribution, P ðnÞ ¼ en
2=ð2QsÞffiffiffiffiffiffiffi
2pQs

p ,

using the Box–Muller algorithm [21]. The resulting dis-

tribution of displacements, n� n0, reproduces the short-
time propagator on average.

The random-walk of individual particles conserves

mass in only the average sense, hnii ¼ 0. The overall

conservation of mass automatically improves with

increasing number of particles; i.e., limN!1 NðNÞ ¼ 0 for

the net error NðNÞ ¼
PN

i¼1 qini. For practical imple-

mentations, it is useful to constrain the random walk so

that mass is exactly conserved overall. This requires thatPN
i¼1 qi

�nni � 0 where a correction term is added to each

unconstrained ni. To accomplish this, the net error from

the unconstrained random walks, N, is distributed

among the various particles in proportion to their

weight and their RMS deviation:
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�nni ¼ ni �
qi

ffiffiffiffiffi
Qi

p
P

i qi

ffiffiffiffiffi
Qi

p N: ð24Þ

This guarantees conservation at all times. The constraint

forces the evolution of a single particle to be completely

deterministic, but it has little effect on the individual

random walks for a large number of particles.

This Fokker–Planck approach is expected to be

successful for modeling the distribution of large voids.

However, the continuum approximation has difficul-

ties with small-clusters. The requisite assumption of

smoothly-varying parameters versus size is no longer

valid. Furthermore, in order to employ the short-time

propagator, Gðn; n0; tÞ, the parameters K and Q should

be approximately constant over the interval n� n0. This
implies that s must be kept small. Finally, Monte Carlo

methods are inefficient for studying nucleation from

small, unstable clusters. Huge numbers of transitory

clusters must be followed in order to identify the few

that randomly grow to stable sizes.

Therefore, we split the distribution function into two

components, qvoid ¼ qM þ qL. The Master equation is

used for qM with small integer-sized voids, from the

vacancy monomer through the (arbitrarily chosen) limit

of NM ¼ 2000. The Langevin Monte Carlo method

is reserved for qL, to describe the larger clusters in

continuous size space. The truncated distribution qM

now obeys the original Dirichlet boundary condi-

tion, qMð1Þ ¼ Cv plus an additional, homogeneous Di-

richlet boundary condition at the upper boundary,

qMðNMÞ ¼ 0. Clusters grow to this upper boundary

at a rate qMðNM � 1ÞbðNM � 1Þ, where they are re-

moved from qM. The loss is compensated by creating

a new Langevin particle at position n ¼ NM with

amplitude equal to the density of clusters lost,

qMðNM � 1ÞbðNM � 1Þs. In effect, an artificial sink term

in qM is paired with an equal source term in qL, oper-

ating over the time-step, s.
The Langevin equation allows clusters to evolve to

smaller sizes, as well as larger, so the domain for qL

extends from n ¼ 1 to arbitrary size. The boundary

condition must be qLð1Þ ¼ 0 in order for the total dis-

tribution to satisfy qð1Þ ¼ Cv. This constraint is main-

tained with absorbing boundary conditions – any

particle that reaches or crosses the boundary n ¼ 1 is

deleted from the calculation. Simply applied, this strat-

egy can discard clusters after they shrink to unphysical

size, n < 1. However, we find that the resulting error is

negligible even at the highest temperatures. The error

can also be eliminated by using the appropriate re-

stricted Green function near the boundary [10].

In order to preserve numerical accuracy, it is neces-

sary to choose time-steps such that relative changes in

qM are kept small. The system is initially evolved slowly,

to follow the transient development of dimers, trimers,

and small-clusters at the outset of the simulation. The
time-step is increased exponentially as evolution slows

after the initial transient. A maximum value, smax, is

achieved around the time that Cv, Ci, and qM reach a

quasi-stationary limit. The quasi-stationary character

permits large numerical time-steps, provided that qM is

evolved with a numerically stable method. Accordingly,

we use the unconditionally stable, backwards Euler

method.

In principle, one Langevin particle will be created per

time-step, as soon as qMðNM � 1Þ achieves a non-zero

value. However, this outcome is undesirable in practice,

as the computational load will continually increase with

time. Particles created at late times may have negligible

weight, because qMðNM � 1ÞbðNM � 1Þs is small when

the vacancy supersaturation falls to low values.

Accordingly, we find it useful to impose a threshold

value, qth, for the creation of new Langevin particles. If

the time-integrated flux of voids at the upper boundary

of the Master equation is below this threshold after

time-step s, then the corresponding voids are held at

fixed size, NM. Additional voids will accumulate over i
successive time-steps until their combined number den-

sity
P

i qMðNM � 1; tiÞbðNM � 1; tiÞsi > qth. All of the

accumulated clusters are then transferred to a new

Langevin particle, and the process is repeated. Eventu-

ally, after void nucleation has largely ceased, the flux of

clusters from qM is negligible, and no new Langevin

elements are created.

The frozen clusters do not contribute to the source/

sink terms in the monomer rate equations, because they

are fixed in size and therefore prevented from reacting

with the monomers. This artificial constraint introduces

a cumulative error in the simulated swelling. In order to

keep it acceptably small, the frozen clusters should never

involve more than a tiny fraction of the total density of

voids of similar sizes. Thus, qth is a second convergence

parameter, besides the maximum time-step value, smax. It

is typically set at qth ¼ 105 m�3.
2. Results

The mixed Master equation/Fokker–Planck method

introduced here is a modification of the path integral

Fokker–Planck approach taken by Wehner and Wolfer

[10]. The results differ from these early calculations be-

cause the model material parameters are slightly chan-

ged, the monomer rate equation has been embellished

beyond its original form [10,19], and the void cross-

sections for vacancy emission have been modified to be

consistent with their underlying derivation from a time-

reversal argument. In the results reported here, time-

steps are chosen so as to maintain conservation of mass

at approximately parts in 103–105 of the steady-state

swelling. The absolute conservation is accurate to parts

in 107 over 40 dpa of fluence. The simulation starts with
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s0 ¼ 10�5 s in order to follow the transient formation of

vacancy dimers, trimers, etc. Time-steps increase suc-

cessively by 0.1% until smax ¼ 500 s for irradiation dose

rates of 10�6 dpa/s. This limit is achieved near 0.5 dpa of

fluence, when transient changes to the smaller cluster

densities are mostly completed.

The predicted volumetric swelling is easily obtained

from the total volume of all voids in the distribution

function, neglecting relaxation. Linear dimensions are

assumed to increase isotropically, as there is no external

stress in these simulations. Fig. 1 shows swelling curves

for high-purity austenitic steel, as obtained from the

two-component Master/Fokker–Planck method. The

540 �C simulation has a negligibly short rise time to

the peak rate of swelling. It reaches a rate of 0.8%/dpa;

which subsequently declines slightly. The same material

at 600 �C displays a visible swelling delay and reaches a

rate of 0.4%/dpa at 100 dpa fluence, where the rate of

swelling is still increasing with time. We identify this

transient swelling delay with the experimental incuba-

tion process. A detailed comparison to experiment will

be made in a later publication [22]. Here, it is sufficient

to note that experiments on high-purity, ternary Fe–Cr–

Ni stainless steels can also show extremely short incu-

bation times for moderate temperatures [23,24]. The

observed steady-state swelling rate remains about 1%/

dpa. Preliminary calculations with a time-dependent

dislocation density appear to give good agreement with

experiment [25].

It is useful to examine the corresponding time-

dependent void size distributions for the cases of long-

and short-incubation times, modeled independently of

concurrent dislocation density evolution. Short incuba-

tions are characterized by an initially high vacancy
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Fig. 1. Swelling curves for type-316 stainless steel with a con-

stant dislocation density of 6 · 1014 m�2 at four temperatures.
supersaturation, which gives very rapid void nucleation.

This situation is depicted in Fig. 2, with a series of void

size distribution functions at sequential times. The

incubation period (defined here as the time to reach the

maximum swelling rate) is predicted to last less than 1.0

dpa (�280 h) in this simulation. The leading edge of the

distribution in Fig. 2 advances with time as the largest

voids accumulate vacancies. As the total number of

voids and average void size increase, the aggregate sink

strength for mobile monomer defects also rises, and the

vacancy supersaturation decreases. (The monomer va-

cancy density starts at approximately 6.78 · 1020 m�3,

becomes 3.03 · 1020 m�3 at 1 dpa, and reaches 1.32· 1020
m�3 by 40 dpa.) As this occurs, the large clusters remain

stable and continue to grow. However, small-clusters

become increasingly unstable and shrink on average, in

a process akin to ripening. A gap opens in the void size

distribution, separating the population of small, tran-

sient, unstable clusters from the distribution of large,

stable voids (cf. Ref. [10]). Critical voids (those at the

threshold between stable and unstable sizes) lie near the

minimum of the distribution. The height of the distri-

bution function there controls the rate at which new

stable voids will nucleate, so the creation of stable voids

falls to negligible values as the depression in the distri-

bution progresses.

The data in Fig. 2 are obtained from a pure Master

equation approach, using the backwards Euler method.

The time-step is set to conserve the total number of

atoms to parts in 103 of the total swelling. smax ¼ 100 s

by the end of the simulation. Note that practical void
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swelling simulations may need to reach times of 108 s

and beyond, so that 106 iterations including as many as

106 coupled linear equations will be required.

Fig. 3 shows the same distribution function at 40 h,

comparing a two-component Master equation/Fokker–

Planck treatment to the corresponding pure Master

equation results. Small time steps are used to increase

the number of Monte Carlo particles and reduce the

scatter in the distribution function. The Monte Carlo

data has also been partially smoothed by means of a

histogram. An additional, least squares fit is made to the

histogram using a piecewise linear curve. The fit dem-

onstrates that the Monte Carlo distribution function is

equivalent to the solution of the full Master equation. At

t ¼ 40 h (0.144 dpa), approximately 1700 Langevin par-

ticles have been formed. The maximum number of par-

ticles (�12 000) is reached near 1.2 dpa. The asymptotic

number is only �9500, because some of the particles

shrink and are eventually deleted from the simulation.

At the peak rate of formation, particles are created at

every time-step with weights on the order of 1019 m�3.

For this 500 �C calculation, the initial, transient

behavior involves the pinching off of the distribution of

large, stable clusters from the narrow peak of small, un-

stable clusters (Fig. 2). When the separation is more

complete, the small-cluster distribution qM is quasi-

stationary, and its evolution is controlled by the rate

at which the large clusters grow. The stable clusters

in qL grow larger with time, shifting the upper

bulge in the distribution to larger sizes while changing its

shape only gradually. In most calculations at 10�6 dpa/s,
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Fig. 3. A comparison of the Master equation solution to the

two-component Master/Fokker–Planck results with the same

smax ¼ 100 s, at t ¼ 40 h and 500 �C. The pure Master equation

solution is shown with a smooth, solid line. The scatter-plot

shows a histogram of the raw Monte Carlo simulation. A piece-

wise linear fit to the histogram is shown with a jagged solid line.
smax ¼ 500 s, typically 103–105 Langevin particles are

introduced.

Ideally, the two-part distribution function assigns all

unstable clusters to the Master equation treatment,

while the stable voids are modeled with the Langevin

Monte Carlo scheme. In that case, the Master equation

cutoff, NM, would be chosen to lie at or above the critical

void size. This is the case at 500 �C, but it is not practical
at high temperatures or low dose-rates, where the stable

void size may be very large. The distribution function

for a high temperature case (at 600 �C) is shown in Fig.

4. Here, stable voids nucleate much more slowly from

the low initial vacancy supersaturation. Even after ex-

tended periods of void nucleation, the accumulated

voids contribute negligible amounts to the monomer

sink strength, as compared to the (constant-density)

dislocations. Therefore, the monomer rate equations are

essentially invariant over the period displayed in Fig. 4,

and the vacancy supersaturation remains almost con-

stant with time. (The vacancy concentration is

1.04 · 1020 m�3 at the outset, 1.03 · 1020 m�3 at 10 dpa,

and 9.63· 1019 m�3 at 50 dpa.) By similar reasoning, the

net dimer formation rate (vþ v () v2 and v2 þ i ! v
reactions) and the dimer density obtain a quasi-sta-

tionary limit, after the initial transient when dimers are

formed. In this quasi-stationary limit, a constant net

number of dimers are created from monomers per unit

time, but almost equal numbers grow to become trimers.

This same argument applies to successively larger voids

until the leading edge of the void size distribution

is reached, where there is a transient increase in the
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Fig. 4. Void size distribution function versus number of

vacancies in the void. Distributions are shown for every 5 h of

exposure, up to 40 h. This simulation corresponds to a tem-

perature of 600 �C, dose rate of 10�6 dpa/s, and dislocation

density of 6· 1014 m�2. Here, smax ¼ 5 s is chosen so as to re-

duce the statistical noise (cf. Fig. 3).
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distribution function. The net effect is that the distri-

bution function only increases at the advancing upper

end of the distribution function. As time progresses, the

leading edge moves to larger sizes, and yet larger voids

approach a quasi-stationary distribution. Eventually,

the void sink strength will increase to significant levels,

vacancy supersaturation falls, and further void nucle-

ation ceases. However, in this case, nucleation and

incubation are unfinished even at 100 dpa.

Figs. 2 and 4 serve to illustrate an important adia-

batic principle in the evolution of the overall distribu-

tion. Individual small-clusters undergo especially rapid

evolution, randomly losing vacancies at a high rate while

only occasionally absorbing a vacancy. They are

unstable and tend to disappear, on average. Their rapid

evolution makes for stiff rate equations governing the

distribution of small-clusters. It also implies that the

small-cluster distribution will rapidly adjust to and

subsequently closely track any slow changes in the sys-

tem parameters. As a result, the relevant time-scale for

the evolution of small-void densities is dictated by the

overall evolution of the system, not by the characteristic

rates of reaction of the small-clusters with the mobile

defects. Separating out the small-cluster qM and

imposing time-independent boundary conditions on the

upper end allows it to reach a quasi-stationary limit,

permitting the use of larger time-steps. This same prin-

ciple motivates the quasi-stationary approximation in

the monomer rate equations.
3. Conclusion

We present a numerical scheme to treat void nucle-

ation and growth on the same footing. Our new imple-

mentation is able to account for transient behavior yet

remain efficient at long times. We have applied it to pure

type-316 stainless steels, looking at void evolution only –

all other aspects of the microstructure are held fixed at

this time. We observe separate incubation and swelling

regimes. Our results lack the substantial incubation

period of commercial steels except at high T . High-

purity steels, on the other hand, can have very short

incubation times, in better agreement with the predic-

tions of the present simulations [23,24]. We see clear

indications that incubation and void nucleation are re-

lated, although they are not synonymous. Small vacancy

clusters/voids form and disappear continually, main-

taining an appreciable population of sub-critical clusters

as long as radiation damage persists. Initially, this sub-

critical population provides a small flux of voids to form

a more permanent population of larger voids (i.e. nucle-

ation of stable voids). During the incubation period,

void swelling is determined by both this influx as well as

the continued growth of permanent voids. As the stable

population increases, the influx from the sub-critical
population diminishes. Eventually, the influx effectively

ceases, and the permanent voids reach their maximum

growth rate, as steady-state swelling is attained. Never-

theless, there remains a sub-critical vacancy cluster and

void population that changes only slowly in response to

the increase in the densities of both permanent voids and

dislocations. This sub-critical void population contrib-

utes a competing sink for vacancies and interstitials; it

has become a population of persistent recombination

sites. Realistic simulations of transient irradiation

swelling need to include all of these effects.

Void nucleation proceeds in this model despite the

lack of helium or other gas impurities and in the absence

of any production bias. This may result from our neglect

of vacancy loop nucleation and formation of stacking

fault tetrahedra in competition with the formation of

three-dimensional vacancy clusters. In any case, how-

ever, our simulations show that any supersaturation of

vacancies will create stable voids at a non-zero rate,

however small.

This paper is intended primarily to develop and

introduce a novel approach to the non-equilibrium

evolution of a cluster population. At this time, it is only

applied to a void population growing from mobile

monomers. Thus, the model does not allow for loop

nucleation and growth and does not account for �pro-
duction bias’ of preformed defect clusters from large

damage cascades [26]. Suitable generalizations of this

new method will be suited to the evolution of other

clusters, including bubbles and dislocation loops. Be-

cause the time-dependence of the total system is gov-

erned by a complex co-evolution all of its constituents,

we plan to successively incorporate additional features

in the model. This incremental approach will better ex-

pose the relative importance of different cluster species

and reaction processes. It will similarly reveal the nature

of their mutual interactions and the effect of their

interactions on swelling behavior.
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